1. Draw α -D-fructose.

2. Draw pyruvate.

- 3. How many total (all together) C-C and C-H bonds are present in fructose?
- 4. How many total (all together) C-C and C-H bonds are present in **two** pyruvate molecules?
- 5. What is the numerical difference between your answers for #3 and #4?
- 6. How many redox reactions occur in the pathway of glucose becoming two pyruvate molecules in myocytes?
- 7. Identify the enzymes that catalyze the redox steps in myocytes.

Fed (Cardiac Myocyte)	Increasing	Decreasing	N/A
Blood glucose			
Blood [Insulin]			
Insulin Receptor Signal			
Blood [Glucagon]			
Glucagon Receptor Signal			
[cAMP]			
Flux through GLUT2			
Flux through GLUT4			
Regulated Enzyme Phosphorylation Level			
Flux through glycolysis			
[Fructose-2,6-bisphosphate]			
Activity of Phosphofructokinase-2			
Activity of Fructose-2,6-bisphosphatase			

NAME:			